Bibliography

Alsina, Claudi, and Roger B Nelsen. Math Made Visual: Creating Images for Understanding Mathematics. Washington, DC: Mathematical Association of America, 2006.

Anderson, Ian. "Constructing Tournament Designs." The Mathematical Gazette 73, no. 466 (December 1989): 284-292.

"Astroid." Antiprism. http://www.antiprism.com/album/865_string_art/string3_4_Med.jpg.10.html.

Ball, W. W. Rouse, and H. S. M Coxeter. Mathematical Recreations & Essays. 12th ed. Toronto: University of Toronto Press, 1974.

Bardos, Andras. "Personal correspondence," October 26, 2009.

Blåsjö, Viktor. "Jakob Steiner's systematische Entwickelung: The Culmination of Classical Geometry." The Mathematical Intelligencer 31, no. 1 (January 2009): 21-29.

Boas, Ralph P. "Mobius Shorts." Mathematics Magazine 68, no. 2 (April 1995): 127.

Chyatte. "Math and the Arts: Just Passing Through." Math Horizons (April 2009): 16.

Cooke, Roger. The History of Mathematics: A Brief Course. 2nd ed. Hoboken, N.J: Wiley-Interscience, 2005.

Coxeter, H. S. M. Regular Complex Polytopes. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.

———. Regular Polytopes. 2nd ed. New York: Macmillan, 1963.

Cromwell, Peter R. Polyhedra. Cambridge, U.K: Cambridge University Press, 1997.

Császár, Ádám. "A Polyhedron without Diagonals." Acta Scientiarum Mathematicarum 13 (1949): 140-142.

Cullen, Mike R. "Moire Fringes and the Conic Sections.." College Mathematics Journal 21, no. 5 (1990): 370-78.

Cundy, H. Martyn, and A. P Rollett. Mathematical Models. 2nd ed. Oxford: Clarendon Press, 1961.

Dedò, Maria. "Machines for Building Symmetry.." In Mathematics and Art: Mathematical Visualization in Art and Education, edited by Claude Paul Bruter, 337. Berlin: Springer, 2002.

Demaine, Erik D, and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge: Cambridge University Press, 2007.

Dudeney, Henry Ernest. Amusements in Mathematics. London: Nelson, 1917.

Frederickson, Greg N. Hinged Dissections: Swinging & Twisting. New York: Cambridge University Press, 2002.

———. Piano-Hinged Dissections: Time to Fold! Wellesley, Mass: A.K. Peters, 2006.

Frederickson, Greg N. "An animation of the new swing-hinged dissection of an equilateral triangle to a square.." http://www.cs.purdue.edu/homes/gnf/book2/anim34SS.mpg.

———. "Stackfolding dissections." http://www.cs.purdue.edu/homes/gnf/book3/stackfold.html.

Gardner, Martin. The Scientific American Book of Mathematical Puzzles & Diversions. Vol. 1. 2 vols. New York: Simon and Schuster, 1959.

———. The Scientific American Book of Mathematical Puzzles & Diversions. Vol. 2. 2 vols. New York: Simon & Schuster, 1961.

———. Time Travel and Other Mathematical Bewilderments. New York: W.H. Freeman, 1988.

Giebel, Karl. Anfertigung Matematischer Modelle für Schüler Mittlerer Klassen. Leipzig: B. G. Teubner, 1925.

v. Girsewald, Thomas. "Economic Partitioning of Three-Dimensional Space with Least Interface Area." v. Girsewald. http://www.vongirsewald.com/foam/.

Goldberg, Michael. "Polyhedral Linkages." National Mathematics Magazine 16, no. 7 (April 1942): 323-332.

———. "Unstable Polyhedral Structures." Mathematics Magazine 51, no. 3 (May 1978): 165-170.

Gorham, John. A System for the Construction of Crystal Models on the Type of an Ordinary Plait. E. & F. N. Spon, 1888.

Hilbert, David. Geometry and the Imagination. New York: Chelsea Pub. Co, 1952.

Hilton, Peter John, Derek Allan Holton, and Jean Pedersen. Mathematical Reflections: In a Room with Many Mirrors. New York: Springer, 1997.

———. Mathematical Vistas: From a Room with Many Windows. New York: Springer, 2002.

Holden, Alan. Orderly Tangles: Cloverleafs, Gordian Knots, and Regularpolylinks. New York: Columbia University Press, 1983.

———. Shapes, Space, and Symmetry. New York: Columbia University Press, 1971.

Hull, Thomas. Project Origami: Activities for Exploring Mathematics. Wellesley, Mass: A.K. Peters, 2006.

Hunt, J. L., B. G. Nickel, and Christian Gigault. "Anamorphic images." American Journal of Physics 68, no. 3 (March 2000): 232-237.

Inchbald, Guy. "Five Space-Filling Polyhedra." The Mathematical Gazette 80, no. 489 (November 1996): 466-475.

Irving, Claire. "Making the real projective plane." The Mathematical Gazette 89, no. 516 (November 2005): 417 - 423.

Kappraff, Jay. Connections: The Geometric Bridge Between Art and Science. 2nd ed. Singapore: World Scientific, 2001.

Kempe, Alfred Bray. How to draw a straight line, 1877.

Kim, Scott. "An Impossible Four-Dimensional Illusion." In Hypergraphics: Visualizing Complex Relationships in Art,science, and Technology, edited by David W Brisson, 239. Boulder, Colo: Published by Westview Press for the American Association for the Advancement of Science, 1978.

Köller, Jürgen. 2005. Flexatube. Mathematische Basteleien. http://www.mathematische-basteleien.de/flexatubes.htm

Loeb, Arthur L. Space Structures--Their Harmony and Counterpoint. Rev. Boston: Birkhäuser, 1991.

Lord Kelvin. "On the Division of Space with Minimum Partitional Area." Philosophical Magazine 24, no. 151 (1887): 503.

Lovett, D. R, and NetLibrary, Inc. Demonstrating Science with Soap Films. Bristol: Institute of Physics Pub, 1994.

Mathematische Modelle. Aus den Sammlungen von Universitäten und Museen: 2 Bände (Bildband/Kommentarband). Braunschweig: F. Vieweg & Sohn, 1986.

Miyazaki, Koji, and Takada Ichiro. "Uniform Ant-hills in the World of Isozonohedra." Structural Topology 4 (1980): 21-30.

Morley, F. V. "Discussions: A Note on Knots." The American Mathematical Monthly 31, no. 5 (May 1924): 237-239.

Pargeter, A. R. "Plaited Polyhedra." The Mathematical Gazette 43, no. 344 (May 1959): 88-101.

Pearce, Peter. Polyhedra Primer. New York: Van Nostrand Reinhold, 1978.

Pedersen, Jean J. "Braided Rotating Rings." The Mathematical Gazette 62, no. 419 (March 1978): 15-18.

———. "Collapsoids." The Mathematical Gazette 59, no. 408 (June 1975): 81-94.

Penrose, L. S., and R. Penrose. "Impossible objects: A special type of illusion." British Journal of Psychology 49 (1958): 31.

Peterson, Ivars. "Crinkled Doughnuts." Science News 148, no. 26/27 (December 23, 1995): 432-433.

———. Fragments of Infinity: A Kaleidoscope of Math and Art. New York: Wiley, 2001.

———. "The Honeycomb Conjecture." Science News 156, no. 4 (July 24, 1999): 60-61.

Pickover, Clifford A. The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology. New York: Thunder's Mouth Press, 2006.

Pook, L. P. Flexagons Inside Out. Cambridge: Cambridge University Press, 2003.

Quenell, Gregory. "Envelopes and String Art." http://faculty.plattsburgh.edu/gregory.quenell/talks/stringart.pdf.

———. "Envelopes and String Art." Mathematics Magazine 82, no. 3 (June 2009): 174-85.

Salvadori, Mario, Saralinda Hooker, and Christopher Ragus. Why Buildings Stand up: The Strength of Architecture. 1st ed. New York: Norton, 1980.

Schattschneider, Doris. M.C. Escher Kaleidocycles. Rev. ed. Corte Madera, Calif: Pomegranate Artbooks, 1987.

The National Council of Teachers of Mathematics. Multi-Sensory Aids in the Teaching of Mathematics. New York: Columbia University, 1945.

Tóth, L. Fejes. "What the bees know and what they do not know." Bulletin of the American Mathematical Society 70, no. 4 (1964): 468-81.

Wenninger, Magnus J. Dual Models. Cambridge [Cambridgeshire]: Cambridge University Press, 1983.

Wenninger, Magnus J. Spherical Models. Mineola: Dover Publications, 1999.

Yates, Robert C. Curves and Their Properties. National Council of Teachers of Mathematics, Inc., 1906 Association Drive, Reston, Virginia 22091 ($6.40), 1974. http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED100648.

Comments